97 research outputs found

    Ayurgenomics-based frameworks in precision and integrative medicine: Translational opportunities

    Get PDF
    In today’s globalized and flat world, a patient can access and seek multiple health and disease management options. A digitally enabled participatory framework that allows an evidence-based informed choice is likely to assume an immense importance in the future. In India, traditional knowledge systems, like Ayurveda, coexist with modern medicine. However, due to limited crosstalk between the clinicians of both disciplines, a patient attempts integrative medicine by seeking both options independently with limited understanding and evidence. There is a need for an integrative medicine platform with a formalized approach, which allows practitioners from the two diverse systems to crosstalk, coexist, and coevolve for an informed cross-referral that benefits the patients. To be successful, this needs frameworks that enable the bridging of disciplines through a common interface with shared ontologies. Ayurgenomics is an emerging discipline that explores the principles and practices of Ayurveda combined with genomics approaches for mainstream integration. The present review highlights how in conjunction with different disciplines and technologies this has provided frameworks for (1) the discovery of molecular correlates to build ontological links between the two systems, (2) the discovery of biomarkers and targets for early actionable interventions, (3) understanding molecular mechanisms of drug action from its usage perspective in Ayurveda with applications in repurposing, (4) understanding the network and P4 medicine perspective of Ayurveda through a common organizing principle, (5) non-invasive stratification of healthy and diseased individuals using a compendium of system-level phenotypes, and (6) developing evidence-based solutions for practice in integrative medicine settings. The concordance between the two contrasting streams has been built through extensive explorations and iterations of the concepts of Ayurveda and genomic observations using state-of-the-art technologies, computational approaches, and model system studies. These highlight the enormous potential of a trans-disciplinary approach in evolving solutions for personalized interventions in integrative medicine settings

    Genomic insights into ayurvedic and western approaches to personalized medicine

    Get PDF
    Ayurveda, an ancient Indian system of medicine documented and practised since 1500 B.C., follows a systems approach that has interesting parallels with contemporary personalized genomic medicine approaches to the understanding and management of health and disease. It is based on the trisutra, which are the three aspects of causes, features and therapeutics that are interconnected through a common organizing principle termed ‘tridosha’. Tridosha comprise three ascertainable physiological entities; vata (kinetic), pitta (metabolic) and kapha (potential) that are pervasive across systems, work in conjunction with each other, respond to the external environment and maintain homeostasis. Each individual is born with a specific proportion of tridosha that are not only genetically determined but also influenced by the environment during foetal development. Jointly they determine a person’s basic constitution, which is termed their ‘prakriti’. Development and progression of different diseases with their subtypes are thought to depend on the origin and mechanism of perturbation of the doshas, and the aim of therapeutic practice is to ensure that the doshas retain their homeostatic state. Similarly, western systems biology epitomized by translational P4 medicine envisages the integration of multiscalar genetic, cellular, physiological and environmental networks to predict phenotypic outcomes of perturbations. In this perspective article, we aim to outline the shape of a unifying scaffold that may allow the two intellectual traditions to enhance one another. Specifically, we illustrate how a unique integrative ‘Ayurgenomics’ approach can be used to integrate the trisutra concept of Ayurveda with genomics. We observe biochemical and molecular correlates of prakriti and show how these differ significantly in processes that are linked to intermediate patho-phenotypes, known to take different course in diseases. We also observe a significant enrichment of the highly connected hub genes which could explain differences in prakriti, focussing on EGLN1, a key oxygen sensor that differs between prakriti types and is linked to high altitude adaptation. Integrating our observation with the current literature, we demonstrate how EGLN1 could qualify as a molecular equivalent of tridosha that can modulate different phenotypic outcomes, where hypoxia is a cause or a consequence both during health and diseased states. Our studies affirm that integration of the trisutra framework through Ayurgenomics can guide the identification of predisposed groups of individuals and enable discovery of actionable therapeutic points in an individualized manner

    Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements

    Get PDF
    BACKGROUND: The primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting. RESULTS: We conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes. CONCLUSIONS: Our study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting genes through Alus could thus have contributed to evolution of novel regulatory networks in the primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-masked in studies pertaining to identification of predisposition markers

    Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism

    Get PDF
    Background: Alu RNAs are present at elevated levels in stress conditions and, consequently, Alu repeats are increasingly being associated with the physiological stress response. Alu repeats are known to harbor transcription factor binding sites that modulate RNA pol II transcription and Alu RNAs act as transcriptional co-repressors through pol II binding in the promoter regions of heat shock responsive genes. An observation of a putative heat shock factor (HSF) binding site in Alu led us to explore whether, through HSF binding, these elements could further contribute to the heat shock response repertoire. Results: Alu density was significantly enriched in transcripts that are down-regulated following heat shock recovery in HeLa cells. ChIP analysis confirmed HSF binding to a consensus motif exhibiting positional conservation across various Alu subfamilies, and reporter constructs demonstrated a sequence-specific two-fold induction of these sites in response to heat shock. These motifs were over-represented in the genic regions of down-regulated transcripts in antisense oriented Alus. Affymetrix Exon arrays detected antisense signals in a significant fraction of the down-regulated transcripts, 50% of which harbored HSF sites within 5 kb. siRNA knockdown of the selected antisense transcripts led to the over-expression, following heat shock, of their corresponding down-regulated transcripts. The antisense transcripts were significantly enriched in processes related to RNA pol III transcription and the TFIIIC complex. Conclusions: We demonstrate a non-random presence of Alu repeats harboring HSF sites in heat shock responsive transcripts. This presence underlies an antisense-mediated mechanism that represents a novel component of Alu and HSF involvement in the heat shock response

    Utilizing linkage disequilibrium information from Indian genome variation database for mapping mutations: SCA<sub>12</sub> case study

    Get PDF
    Stratification in heterogeneous populations poses an enormous challenge in linkage disequilibrium (LD) based identification of causal loci using surrogate markers. In this study, we demonstrate the enormous potential of endogamous Indian populations for mapping mutations in candidate genes using minimal SNPs, mainly due to larger regions of LD. We show this by a case study of the PPP2R2B gene (∼400 kb) that harbours a CAG repeat, expansion of which has been implicated in spinocerebellar ataxia type 12 (SCA12). Using LD information derived from Indian Genome Variation database (IGVdb) on populations which share similar ethnic and linguistic backgrounds as the SCA12 study population, we could map the causal loci using a minimal set of three SNPs, without the generation of additional basal data from the ethnically matched population. We could also demonstrate transferability of tagSNPs from a related HapMap population for mapping the mutation

    Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition

    Get PDF
    Motivation: Transposon-derived Alu repeats are exclusively associated with primate genomes. They have gained considerable importance in the recent times with evidence of their involvement in various aspects of gene regulation, e.g. alternative splicing, nucleosome positioning, CpG methylation, binding sites for transcription factors and hormone receptors, etc. The objective of this study is to investigate the factors that influence the distribution of Alu repeat elements in the human genome. Such analysis is expected to yield insights into various aspects of gene regulation in primates. Results: Analysis of Alu repeat distribution for the human genome build 32 (released in January 2003) reveals that they occupy nearly one-tenth portion of the sequenced regions. Huge variations in Alu frequencies were seen across the genome with chromosome 19 being the most and chromosome Y being the least Alu dense chromosomes. The highlights of the analysis are as follows: (1) three-fourth of the total genes in the genome are associated with Alus. (2) Alu density is higher in genes as compared with intergenic regions in all the chromosomes except 19 and 22. (3) Alu density in human genome is highly correlated with GC content, gene density and intron density with GC content being major deterministic factor compared with other two. (4) Alu densities were correlated more with gene density than intron density indicating the insertion of Alus in untranslated regions of exons

    Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection

    Get PDF
    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST &#62; 0.3, pair-wise-FST &#62; 0.5, Fay-Wu’s H&#60;−20, iHS&#62; 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges

    Nonrandom distribution of Alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22

    Get PDF
    The first draft of the human genome has revealed enormous variability in the global distribution of Alu repeat elements. There are regions such as the four homeobox gene clusters, which are nearly devoid of these repeats that contrast with repeat dense regions in other transcriptionally active regions of the genome. Our analysis of the completely sequenced chromosomes 21 and 22 revealed a striking bias in Alu distribution. These elements are more clustered in genes which are involved in metabolism, transport, and signaling processes. In contrast, they are significantly fewer in genes coding for information pathway components as well as structural proteins. This bias in Alu distribution is independent of the effect of Alu density of the flanking genomic region and is also not affected by the GC content of the gene and its upstream and downstream regions. The relative proportions of Alu subfamilies (Alu J, Alu S, and Alu Y) are not significantly different in genes with high Alu density belonging to the functional categories of transport, metabolism, and signaling. However, in the structural proteins and information genes, these proportions are lower than the other three categories. We suggest that Alu elements might be involved in regulatory mechanisms and are therefore differentially selected in primate genomes

    Population history and genome wide association studies of birth weight in a native high altitude Ladakhi population

    Get PDF
    Pathological low birth weight due to fetal growth restriction (FGR) is an important predictor of adverse obstetric and neonatal outcomes. It is more common amongst native lowlanders when gestating in the hypoxic environment of high altitude, whilst populations who have resided at high altitude for many generations are relatively protected. Genetic study of pregnant populations at high altitude permits exploration of the role of hypoxia in FGR pathogenesis, and perhaps of FGR pathogenesis more broadly. We studied the umbilical cord blood DNA of 316 neonates born to pregnant women managed at the Sonam Norboo Memorial Hospital, Ladakh (altitude 3540m) between February 2017 and January 2019. Principal component, admixture and genome wide association studies (GWAS) were applied to dense single nucleotide polymorphism (SNP) genetic data, to explore ancestry and genetic predictors of low birth weight. Our findings support Tibetan ancestry in the Ladakhi population, with subsequent admixture with neighboring Indo-Aryan populations. Fetal growth protection was evident in Ladakhi neonates. Although no variants achieved genome wide significance, we observed nominal association of seven variants across genes (ZBTB38, ZFP36L2, HMGA2, CDKAL1, PLCG1) previously associated with birthweight
    corecore